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ON AN ALTERNATIVE FOR PURSUIT-EVASION GAMES IN AN INFINITE TIME INTERVAL* 

A.A. AZAMOV 

The structure of phase space of differential pursuit-evasion games is 
studied for the case when the evader is subjected to information dis- 
crimination with an advance by 6>0, &==const. The method of transfinite 
iteration of the Pshenichnyi operator is used to establish an alternative 
for differential pursuit-evasion games in an infinite time interval. 

1. Definition of the basic concepts. Consider a differential pursuit-evasion game 
in the phase space Rd with the equation of motion 

z' = f (2% n, u), u E P c Rn, Y E 0 cl R” (I.*) 

and the terminal set MC: Rd. The aim of the pursuer who controls the parameter u is to 
bring the phase point from its initial position to the set N; the aim of the evader who 
controlstheparameter v, istheopposite. Ateveryinstantoftime t > 0 thepursuerhasaccess 
to up to date information z(t) and v(s),t<s< t -t 6 (everywhere in &> 0). Following /l/, 
we assume that the number 6 is chosen by the evader at the start of the motion, and does not 
change during the motion (camp. with /2/t. 

Thetypeofinformabilitydescribedaboveisrealizedbelowbyseparatingspecific classesofthe 
strategies P,Q of the pursuer and evader respectively (for brevity we will call such a pair 
of strategies the game). Here every triad go Rd, UE P, VEQ generates a unique trajectory 

s (t; E, u, P), t > 0. 
Let 1 denote either a segment of the form [O,rl, or a semi-axis [O,co). By definition, a 

pursuit originating at the initial point E can be successfully completed in the interval I, 
if a strategy UEP exists such that an inclusion z(t;e, U, V)~hf occurs at some ref 
whatever VEQ is. Similarly, escape from the point E is possible in the interval I, if a 
strategy BE Q exists such that we have z (t; 5, U, V)EM for any t EI, whatever UE P 
is. 

Let I+ (or I-)denote the set of all points from which the pursuit (or possibly escape) 
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can be completed in the interval I. It follows directly from the definition that the zones 
I+ and I-do not intersect. In the case of a differential pursuit-evasion game (1.1) with 
classes of the strategies P and Q, we have, by definition, an alternative in the interval 1, 
provided that I+ IJ I- = Rd /3, 4/. 

The validity of the alternative has been established, up to now, for a wide class of games 
in a finite time interval /Z-9/. In /3/ it was shown that the alternative occurs on the semi- 
axis [O,OO), provided that the condition of uniformity of evasion holds. An example is given 
in /3/, Sect.60, showing that in the general case the alternative need not occur on [0,03) for 
the game (1.1) with positional strategies. In /2/ the author describes an analogous example 
for the case of the e-strategies. Below we study the qualitative construction of the phase 
space and prove theorems on the alternative in an infinite time interval when the players use 
the strategies from the classes P,Q. 

We denote the set of all measurable functions a(*):]~, /31 -, A where AC Rr), by A [a, PI. 
In what follows, we shall assume that condition K holds: the domains P,Q are bounded, and 
for any EE Rd, u(-)E P Ia* pi, u(~)~Qkz,fil the Cauchy problem 

Z' = f (Z, u @), v (W, Z (0) = E (1.2) 

has a unique Caratheodory solution defined in the segment [a,p]. If a = 0, then the solution 
will be denoted by Z (t; E, u (*), v (m)). 

Definition. We will call the strategy of the pursuer the pair U, consisting of a family 
of operators {u*} and the functional {zb}. Every operator ub (the functional zd) maps the 
set Rd x Q IO,61 onto the set P [0,61 (or, respectively, into the interval (0,61). We will 
call the strategy of the pursued the pair v = (6,@) consisting of a positive number 6 and 
the mapping vb: Rd -Q [0,61. The set of all strategies ofthe pursuer (pursued) is denoted by 

P(Q). 
If the initial point 5 is given, then the action of the strategies V = ({ub}, {zb)) and 

V = (6,ub) generates a definite trajectory Z(t) = Z(t; 5, U, V) as follows. Let V,J (') = ub [1;1, 

uo (*) = ub 15, vo (-)I and t, = zd 15, u. (.)I. The function z (t) in the time interval IO, t,l is a 
solution of problem (1.2), in which u (t) = uo(t),v(t) = v, (t),a = 0 and 5 = 5. Let 21 = 2 (U 
01 (*) = v., k,], u1 (') = ub 1% u1 (+)I and t, = t, + ti [z,, v1 (.)I. The function z (t) is continued in the 
segment [tr, t,l as a solution of problem (1.2) in which u (t) = u1 (t - ti), u (t) = v1 (t - tl), a = ti 
and E = zl. Repeating the above arguments a denumerable numbers of times, we obtain an 
increasing sequence of numbers 1, and the function z (t), t E [O, to) where t, = sup t,,_ At the 
same time we generate the measurable functions u*(a) :IO,t,) -,P, v,(.):[O,t,)+Q which we will 
call the realizations. For example, u* (t) = u. (t) when t E 10, tr), u* (t) = u1 (t - tt) when t E ]tr, 
tZ) etc. 

If to=OO, then the construction of trajectories ceases. In the general case we may 
find that to< 00. In this case we must resort to transfinite induction /lo/ in order to 
prolong the trajectory over the whole semi-axis IO, co). 

Let h by any ordinal number and let the sequence t,, be defined for all p<h. If 
t, = st~pt,, = co,’ then the construction is completed. Let t*< 00. If h follows some serial 
number v, then we assume that E = Z (tV), vV (e) = vb IEI, uy (a) = ub [E, u, (.)I. and TV = t, + zb I&, uv (-)I 
and the trajectory is continued onto the segment ]t,,,tZ] as a solution of problem (1.2) in 
which u (t) = uV (t - tV), v (t) = v, (t - tV), a = tv. If the number h has no preceding number, then 
we must write tk = t,, continue the realization from the interval IO,tJ to the segment IO,th] 
and put z (th)= limz(t) (the limit as t--tth.-0, exists by virtue of the condition K). 

Since the intervals (t,,,tr+l) are non-empty and pairwise non-intersecting, it follows that 
th = 00 for some limiting serial number exceeding the first non-denumerable ordinal number. 
Thus we have constructed the trajectory and its uniqueness is obvious. 

As was noted by Ushakov, the approach adopted here allows the pursued to terminate, at 
the instant t~+~ E (tk, fE. + 61, the control ~~(f-tZ),tZ<'<t~+~ chosen by him at t=tl, and to 
switch over to a new control u&+i(*). In the problem of escape this condition is natural. As 
far as the problem of pursuit is concerned, we can assume without loss of generality that the 
controls of the pursued are programmed. 

2. Qualitative structure of the phase space. Let the operator 3'6 /2/ place, in 
correspondence, every subset A cRd with the set 

T~(A)=(zER~IV~(.),~~(.),~~E[O,~]:Z(~)EA) 

where u(e) traverses P [O, 61, v (-) traverses Q IO, 61, z (t) = z (t; z, 3~ (-), v (s)). Using the 
process of induction over h, we introduce thetransfinite sequence of subsets h!fb"CRdr namely 
Mb0 = M, iifbA = Tb(hf@) for the serial number h following p and Mb' = u {M,+' 1 p < h} for the 
limiting h. 

Proposition 1. Let h be an ordinal number whose power exceeds the power of the continuum. 
Then M$+l = M&. i.e. Ta (Ma”) = Mb&. 

Proof. Let MbL+l # Mb". Then Mb'+'\ M,p# @ for all p< a. The power of the set A 
of all isolated ordinal numbers smaller than h also exceeds the power of the continuum. Let 
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us place the point a (P)E M,,*+l \ M,,w in correspondence with every CL EA. Since the sets 
Mbp+i\ Mbb do not pairwise intersect, it follows that the function a(.):il-tRd is in 1:l 
correspondence and this contradicts the continuous character of Rd. 

We denote by o(6) the smallest ordinal number 7, for which Mbh+l = Max. Several zones 
separate out naturally in phase space. Let z > 0, 6 = z/n, where n is a positive integer. 

Proposition 2. A pursuit from the points of the set Zr=n M,” can be completed within 
n 

the time interval IO,zI. 
The strategy u* ensuring the completion of the pursuit from the initial point EEZr is 

constructed below in the proof of Proposition 3. From Lemma lof/ll/it follows that the set 

Zr is the same as Tt (M) /2/, p rovided that M is closed. 

Corollary. A pursuit can be completed within a finite time interval from every point of 

the zone Zm = u zr. 
r>0 

Let o be a natural, ordinal-type series 

Z'=M;@, Z" = Q M;, z+= g zb 

Proposition 3. A pursuit can be completed in the time interval LO, w) from the points 
of the zone Z+. 

Proof. Let 6 be arbitrary. We have the decomposition 

Rd = M U (Rd \ Z6) U ngA (M$ \ M?) 

of the phase space into the pairwise non-intersecting parts. If z~ M Ii (Rd\ Z*), then the 

values of the mappings ub,+ play no part here. 

Then z E Ta (Mt-‘) and u* (e) E P (0, 61 and 
Let z E Ma” \ I@, u (e) E Q IO, 61. 

0 E [O, 61 exist such that z (0; z, u* (m), v (e)) E Mt-l, 

Since zG Mi-‘, we have t3> 0. The relations U“ [z, v (*)I = U* (a), T* [z, v (*)I = 8 determine the 

strategy U* EP. 
Let % E Z+ \ M, and let the pursuer apply the strategy U* and the pursued an arbitrary 

strategy VE Q, z(t) in the corresponding trajectory. Then %E Z6 where 6 is the first 

component of V. Let h, denote the smallest oftheordinal numbers h for which %E Ma”. 
Clearly, h,EA. The method of constructing the strategy u* implies that z(tr)E Mt-I. 

Let h, denote the smallest of h for which z (tl)E M$. If A1 = 0, then the pursuit is 

completed, otherwise h, will also have a number preceding it and we will have the inclusion 

z (fJ E Mk-‘. Repeating the above arguments we can construct a decreasing sequence of numbers 

A" for which z(t,)~ M2. Since any sequence of ordinal numbers is fully ordered, it follows 
that h, = 0 for some R. Then z(&)E M and Proposition 3 is proved. 

Let us now turn to the zone Z". Clearly, ZwcZacZ+. Examples given in Sect.4 show 

that situations where Z@#Z+, Zm#Zm are possible. The following assertion characterizes 

the zone Z”. Let Qb be a set of all strategies of the pursued whose first component is not 

less than 6. 

Proposition 4. Let %E Z”. Then a pursuit can be completed from the point % in the 

interval 10,co) in the game (P,Q), and in some finite time interval in the game (P,Qa), for 

any 6. 
Thus a guaranteed finite time of pursuit exists for the points EEZ”. In the case of 

the points %EZ~ we can guarantee a finite time of pursuit, provided that the pursued 
employs, generally speaking, a strategy from the class Qa and 6 is known to the pursuer. 

In the case when %E Za\Z-, the pursued will be able to prevent the completion of the 
pursuit in a finite period of time, by reducing the component 6 of his strategy, whereas 

he can achieve it for the initial points 5 E z+\za , also for a fixed 6, by a suitable 

choice of the second component va. 

3. The alternative in the infinite time interval. Let PO be the set of all 

strategies UEP possessing the following property: for any EeRd and VEQ the sequence 

t.X of the switchovers of the trajectory z(t;%, U,V) is an ordinary (not transfinite) sequence, 
i.e. to =ocJ. The class PO is non-empty. It contains e.g. the strategy U* constructed in 
the proof of Proposition 3. 

Proposition 5. Let Z- = Rd \ Z+. Then an escape from the points of the zone Z- is 

possible in the game (Pm, Q) within the time interval 10,~). 

Proof. If %E Z-, then %r Zb for some 6. The number 6 is used as the first component 
of the strategy V,. The component va is chosen as follows. If z7G Z8, then zr Ta (Z”) by 
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virtue of the choice of a(6). Therefore ve (.)E Q IO, 61 exists such, that z (t;z, u(m), v* (.))F 
Z6 irrespective of what u(.)E P [O,Sl and t E [0,61 are. Let va [zl = v+ (.). If zE Z*, then 
the value of va Izl plays no part here. 

The strategy V, ensures the escape from the initial point %. Indeed, let UE P@,z(t) = 
z(t;%, U,V,) and t,, be the corresponding sequence of the switchover instances. Since %CZd, 
it follows that z(t)CZ" for all tE IO, 61, and in particular when tE lO,t,l. If we put 
z (tr) = zr, then z (t - t,; zl, U, V,) = z (t; E, U, V,)z Zb for t E It,, t,l, etc. Since M c Zb, this 
proves proposition 5. 

From Propositions 3 and 5 we have 

Theorem 1. Let the pursuer in the differential game (1.1) satisfying the condition K, 
adopt the strategy of class PQ' and the pursued the strategy of class Q. Then we have an 
alternative in the time interval [0,00). 

Henceforth we will assume in Sect.3 that a) the domains of controls P and Q are compact; 
b) the function f is continuous and satisfies locally the Lipschitz condition in the variable 
s; c) for any % E Rd, u(.)E P [a,fJl, v(e)= Q[a, fi] problem (1.2) has a solution which can be 
continued to the segment [a,fi]; d) the vectogram f(z,u, Q) is convex for any zeRd, UE P; 
e) the terminal set M is open. We prove in the same manner as Lemma 1 of /12/, that if u(.)E 
P IO,81 and the subset A c Rd is compact, then the set @ = {z (a; 5, u (.)t v(a)) I % E -4, v (.) E 
Q[O,61} is bounded in the norm of the space C[O,Sl. The compactness of cf, in the topology 
c IO, 61 easily follows. 

Proposition 6. The operator Ta transforms open sets into open sets. 
The proof follows that of property 3 in /2/. 

Corollary. All sets Maa, and in particular M,p,Zb , are open. 

Proposition 7. a (6) < 0 for every 6. 

Proof. Let %s Ma@, so that %E Mb” at any n>l. Therefore v,,(e)= Q IO, 61 exists 
such that z,, (t) = z (t; %, u (e), v,, (.))C M;-1 for any u (.)E P IO, 61 and t E IO, 61. Since the 

sequence M$ increases with respect to the inclusion, it follows that 

z,(t)EMa’ when n>l (3.1) 

We can separate from the sequence z,,(.) a subsequence, which converges in the norm of 
iIIO, 61 to the, trajectory z., (t) = z (t; %, u (e), v*(e)) corresponding to some control v* (.)E Q IO, 
. Since Ma is open, the relations (3.1) imply that z* (t)C Ma’ for TV IO, 61. Therefore 

Z* (t) ?? Mao. From this we have %z Tb (Mp), so that Rd\ Mp C Rd\ Tb (Mp). This inclusion 
is equivalent to the relation ,;+I = Maw. 

Proposition 8. Escape is possible from the points of the zone Z- in the game (P,Q) in 
the time interval [O,w). 

This is proved in exactly the same manner as Proposition 5. 

Theorem 2. Let the pursuer in the differential game satisfying the conditions al-e), 
apply the strategy from class P, and the pursued the strategy from class Q. Then an alternative 
exists in the time interval [O,m). 

4. Examples, lo. Let five points .zi(i= O,i,..., 4) move in the plane R* according to the 
equations 

(4.1) 

where u,= 0 and 1 v*l<i when i=O,i,2,3. The point z0 is controlled by the pursued, and the 
points zlr I,, zJ, zb by the pursuer (here z, is fixed). The pursuit is completed when Xi= zo for 
at least one i= 4, 2, 3.4. 

The game is linear and has the phase space RI0 and a closed terminal set. 
Let lo = (zoo, zlO, . . ., zP) and let A denote the interior (in the topology of Ra) of the convex 

envelope of the points zlo,z~~,zao. 
The phase space has the following construction. The zone 2' consists of the points G 

for which ~$EA. The zone Z" coincides with ZoD and the zone Z+consists of Zs as well as 
those points lo for which A #0,x$ lies at the boundary A, while the ray emerging from the 
point zoo in the direction of zrO--zzaO, perpendicular to a side of the triangle A, lies outside 
it. Here 0(8)<20 for every 6. 

20. Let the differential game in the plane with coordinates z,y be described by the 
equations 

2'= 1, y'= U, O<V<4 (4.2) 

The terminal set is defined as follows. Let the subset X c[O,oo) he completely ordered 
with respect to the natural order of the <numerical axis, and be of the ordinal type p, with 
OEC. Let l(n,a) be a segment of the straight line y= --z+n+a bounded by the hyperbola 
y = (~a+ + a)/(+ + 1), z > - 1 and th e ray y= cr,z >O(n~N,cz+ denotes the number following the 
element a) in X. We take, as the terminal set N, the union of all possible segments 
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l(n,a),n~N,e~ Z and the region zy& -1,z.O. The set iY is closed. 
The sequence IW~ in the game (4.2) is independent of 0 and increases up to 0p, i.e. 

to the value of the product of the ordinal numbers w and p. The zones Z-, Z" coincide here 
with the union of the set M and half-plane y<O. If b=supZeeC, then Z+ == {ix, y) ( y d b), 
otherwise Z+ = ((s, y) 1 y < b). 

3O. The region DCR2 is given in polar coordinates by the inequalities 1,5 +cp/(l+cp)< 
r < I,5 i- (2 + @/(I -I- cp), 9 > 0. The point p, controlled by the pursuer, moves along the abscissa 
with a velocity not exceeding 1. The point q controlled by the pursued, moves so that its 
radius vector r rotates with an angular velocity of 1 and varies according to the law r'= u, 

I"ld2. The pursuit is completed when p== p or qzl?. 
The differential game given here has phase space R3,P=l-I, 11, Q=[-2,21. Let z1 be the 

abscissa of the point p,&,z)) are the coordinates of the point g. Then the equation of motion 
has the form 

zl* = ll 

2s' = @r - z*, zg' = I,& + a,, 1‘> 1 
G' = r (zzv - $8). 23' = r (xsu $ z&, r < 1 

(when r<l, the right-hand sides are written out so that conditions a)-e) of Sect.3 hold, 
and the terminal set is 

M = {(Zl, $2, ZQ) J (e, = 2%. a, = 0) or @z. 4 5 rtt. 
In this game Z*+Z@, e.g. (0; 2; 0,1) E zw \ 2". 

The author thanks N.N. Subbotin and A.I. Subbotin for advice and for assessing the results. 
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